Almost strong properness

نویسندگان

چکیده

We introduce the forcing property “almost strong properness” which sits between properness and properness. As an application, we a simple with finite conditions to force Mapping Reflection Principle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properness without Elementaricity

We present reasons for developing a theory of forcing notions which satisfy the properness demand for countable models which are not necessarily elementary sub-models of some (H(χ),∈). This leads to forcing notions which are “reasonably” definable. We present two specific properties materializing this intuition: nep (non-elementary properness) and snep (Souslin non-elementary properness) and al...

متن کامل

Properness for Scaled Gauged Maps

We prove properness of moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet [42] and Schmitt [48]. The proof combines a git construction of Schmitt [48], properness for twisted stable maps by Abramovich-Vistoli [1], a variation of a boundedness argument due to Ciocan-Fontanine-Kim-Maulik [13], and a removal of singularities for bundles on surfaces in Colliot-Thél...

متن کامل

On Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms

We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.

متن کامل

Almost Everywhere Strong Summability of Two-dimensional Walsh-fourier Series

A BMO-estimation of two-dimensional Walsh-Fourier series is proved from which an almost everywhere exponential summability of quadratic partial sums of double Walsh-Fourier series is derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15643